Magkémia

- •A nukleáris tudományok története
- •Az elemi részecskék és a standard modell
- •Az atommag szerkezete és tulajdonságai
- •Az atommagok stabilitása, az elemek kozmológiai evolúciója
- Magreakciók
- Atommagok bomlása
- •A radioaktív bomlás kinetikai leírása
- •Az alfa-bomlás
- •A béta-bomlás
- Magizoméria és a gamma-sugárzás
- •Különleges bomlástípusok
- Magátalakulásokat kísérő szekunder folyamatok
- •A sugárzás és az anyag kölcsönhatásának általános jellemzése
- •Az alfasugárzás és az anyag kölcsönhatása
- •A bétasugárzás és az anyag kölcsönhatása
- Vavilov-Cserenkov-sugárzás
- •A gammasugárzás és az anyag kölcsönhatása
- •Neutronsugárzás keletkezése és kölcsönhatása az anyaggal
- Sugárzásdetektorok
- •Forróatomkémia, forróatomkémiai reakciók
- •A radioaktív sugárzás veszélyei, dózisfogalmak
- •Radioaktív anyagok előfordulása a természetben.
- Radionuklidok és nagyenergiájú sugárzások felhasználása

Ajánlott irodalom:

Vértes Attila: Magkémia I., *Tankönyvkiadó*, Budapest, 1985 Kiss István, Vértes Attila: Magkémia (Akadémiai Kiadó, 1979) K. Muhin: Kísérleti magfizika, Tankönyvkiadó, Budapest, 1985 Kónya József, Nagy Noémi: Izotópia I. Debreceni Egyetemi Kiadó, 2007. Kónya József, Nagy Noémi: Izotópia II. Debreceni Egyetemi Kiadó, 2008. Nagy Lajos György, Nagyné László Krisztina, Radiokémia és izotóptechnika (Műegyetemi Kiadó, 1997) Németh Zoltán: Radiokémiai és izotóptechnikai alapismeretek (Veszprémi Egyetemi Kiadó, 1996) A. Vértes, S. Nagy, Z. Klencsár: Handbook of Nuclear Chemistry, Kluwer Academic Publishers, Dordrecht-Boston-London (2003)

Nagy Sándor internetes elektronikus jegyzetei <u>http://nagysandor.eu/</u>

A magkémia tárgya.....

Magkémia - radiokémia

Nukleáris folyamatok vizsgálata kémiai módszerekkel Kémiai folyamatok vizsgálata, megvalósítása nukleáris módszerekkel

Történelmi visszatekintés.....

1895- Röntgen-sugárzás (X-ray) Wilhelm Conrad Röntgen

1896 - Radioaktivitás

Becquerel,

 $K_2UO_2(SO_4)_2 \cdot 2H_2O$ megfeketítette a becsomagolt fotólemezt

1897 - az elektron felfedezése J.J. Thomson

1898 - M. Curie, Ra és Po felfedezése, A radiokémia születése mg ill. μg mennyiségek 1 t uránban! 1898 - 99 - alfa- és bétasugárzás kimutatása, E. Rutherford

Mágneses eltérítés ellenkező irányba

1899 - 1900 A radon felfedezése Curie M. Curie P. Dorn F.E. Rutherford E.

1900 - A bétasugarak elektronok! Rutherford

1902 - Radioaktív bomlástörvény (exponenciális bomlás) Rutherford, Soddy

1903 - Radioaktív elemátalakulás, bomlási sorok Rutherford, Soddy

1905 - Tömeg-energia ekvivalencia elv,
(*E*=*mc*²), fotoelektromos hatás magyarázata, Einstein

1906 - A gammasugárzás felfedezése P. Villard

- 1910 Az elektron töltésének megmérése Millikan
- 1911 Rutherford híres alfaszórási kísérlete, amely az atommag felfedezéséhez vezetett.

1913 - Izotópok léteznek! J.J. Thomson

1913 - Radioaktív nyomjelzés Hevesy György

- 1913 Bohr atommodellje
- 1914 A gammasugárzás elektromágneses sugárzás!
- 1919 Az első magreakció Rutherford ⁴He + ¹⁴N \rightarrow ¹⁷O + ¹H,
- 1923 Compton-effektus
- 1924 Az anyag kettős természete de Broglie

2016 apr 1

1924 - 27 Kvantummechanika, Paulielv, Heisenberg-reláció (Dirac, Pauli, Heisenberg, Schrödinger)

1926 - A spin felfedezése, (Goudsmit S.A. Uhlenbeck G.E.)

- 1928 Az alfabomlás elmélete (alagúthatás), Condon E.U. Gamow G. Gurney R.W.
- 1928 A Geiger-Müller számláló megalkotása

1930 - A neutrino létezésének feltételezése

1932 - A neutron felfedezése (Chadwick)
(ugyanebben az évben fedezték fel a deutériumot
(Urey) és a pozitront (Anderson))

1933 - Az erős kölcsönhatás, Wigner Jenő

1934 - "Magfúzió" ²H(d,p)³H és ²H(d,n)³He Oliphant M.L., Harteck P., Rutherford E.

1934 - Szilárd Leó szabadalmaztatja a nukleáris láncreakciót

1934 - Mesterséges radioaktivitás (Curie-ék) $_{2017 marc 31}$ ⁴He + ²⁷Al \rightarrow ³⁰P + n; ³⁰P \rightarrow ³⁰Si + β ⁺

- 1934 A bétabomlás elmélete, a neutronbefogás (Fermi)
- 1934 A Szilárd-Chalmers-reakció
- 1935 A Weizsäcker-formula

- 1936 Neutronaktivációs analízis (Hevesy)
- 1937 Az első mesterséges elem előállítása (Tc), Perrier C. Segrè E.G.

1937 - Az elektronbefogás felfedezése, Alvarez L.

- 1938 A Nap energiatermelésnek elmélete (hidrogén fúziója), Bethe, H.
- 1939 Az indukált maghasadás, Hahn-Strassman
- 1939 A késő neutronok felfedezése a maghasadás során
- 1939 A neutron mágneses momentumának meghatározása, Alvarez R.W.m Bloch F.
- 1940 Spontán hasadás, Flerov G.N. Petrzhak K.A.

1940 - Az első transzurán (Np)

1942 - Az első atomreaktor, E. Fermi és mtsai

"Elemi" részecskék

Gene	Lepton		Nyugalmi e.	Töltés		
-ráció (íz)	Jelölés	Név	$E_0/{ m MeV}$	m/m _e	<i>m/</i> u	q /e
1.	veelekt1.neutr		<0,000 002	<4×10 ⁻⁶	<2×10 ⁻⁹	0
	е	elektron	0,511	1	5,486×10 ⁻⁴	-1
2.	ν_{μ}	müon- neutrínó	<0,19	<0,37	<2×10 ⁻⁴	0
	μ	müon	106	207	0,11343	-1
3.	ντ	tau- neutrínó	<18,2	<35,6	<0,02	0
	τ	tau-lepton	1777	3477	1,908	-1

Gene]	Kvark	Nyugalmi e.	Töltés		
-ráció (íz)	Név és jelölés	Angol név- emlékeztető	$E_0/{ m MeV}$	m/m _e	<i>m/</i> u	<i>q</i> / <i>e</i>
1 st	u	up (~fel)	2	4	0,002	+2/3
1	d	down (~le)	5	10	0,005	-1/3
	с	charm (~báj)	1020	2450	1,3	+2/3
2 nd	s	strange (~furcsa)	90	190	0,1	-1/3
3 rd	t	top/truth (~felső/ igazság)	175 000	337 000	185	+2/3
	b	bottom/beauty (~alsó/ szépség)	4500	8200	4,5	-1/3

Erőközvetítő bozonok

	Közvetített	Bozon		Nyugalmi e	Töltés		
	erő	Jelölés	Név	$E_0/{ m MeV}$	m/m_{e}	<i>m</i> /u	q/e
fundamentális	Elektro- mágneses	γ	foton	0	0	0	0
		W	W	80 400	157 000	86	-1
	Gyenge	W^+	bozonok				+1
		Z^0	Z bozon	91 188	178 000	98	0
	Erős, fundament. (színkölcs.)	g	gluon	0	0	0	0
<mark>komplex</mark>	Erős, reziduális (magerő)	π^{\pm}	nion	139,6	273,1	0,150	±1
		π^0	pion	135,0	264,1	0,145	0

Fundamentális kölcsönhatások

Erő:	Gravitáció	Elektrogyenge		Erős		
		Elektro-	Gyenge	Fundamentális	Reziduális	
Jellemzők		mágneses		(színköles.)	(magerő)	
Hatás alapja	tömeg- energia	elektromo s töltés	íztöltés	színtöltés	reziduális szín	
Érintett	valamennyi	elektromo	leptonok, q	q, g	hadronok	
részecskék		s töltésű				
Ismert közvetítő		γ	W^+, W^-, Z^0	g	mezonok	
Hatótávolság	80	∞	~0,001 fm	x	$\sim 1 \text{ fm}$	
Távolságtól (d)	csökkenő	csökkenő	meredeken	növekvő	meredeken	
való függés	$(\propto d^{-2})$	$(\propto d^{-2})$	csökkenő		csökkenő	
Relatív erősség						
u–u 0,001 fm-nél	10 ⁻⁴¹	1	0,8	25		
u–u 0,01 fm-nél	10 ⁻⁴¹	1	0,0001	60		
p–p 1 fm-nél	10-36	1	0,0000001		20 19	

Fontosabb barionok

В	arion	Kvark-	Nyugalmi e. (<i>E</i>	Töltés		
Jelölés	Név	tartalom	$E_0/{ m MeV}$	m/m _e	<i>m</i> /u	<i>q</i> / <i>e</i>
р	<u>proton</u>	u u d	038.3 1836.2 1.0		1.0073	+1
$\overline{\mathbf{p}}$	antiproton	$\overline{\mathbf{u}}\overline{\mathbf{u}}\overline{\mathbf{d}}$	230,5	1650,2	1,0075	-1
n	neutron	u d d	939.6	1838 7	1.0087	0
n	antineutron	$\overline{\mathbf{u}}\overline{\mathbf{d}}\overline{\mathbf{d}}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1050,7	1,0007	0

Színtöltés - színkölcsönhatás

Mezonok & antimezonok (qq)

Magkémia

Az atommag tulajdonságai

Definíciók:

Nuklid (atom amelynek magjában adott számú proton és neutron található) Izotópok (olyan nuklidok, amelyekben a protonok száma azonos) Nukleon (proton, p, és neutron, n) Rendszám (protonok száma, Z) Tömegszám (a protonok és neutronok számának összege, A)

A mag tömege

Egysége:
$$1u = \frac{M(^{12}C)}{12N_A} = 1.66....x10^{-24}g$$

1 u = 1 ATE (atomi tömegegység)

Nyugalmi tömeg: m_0 Mozgó tömeg: $m = m_0 + \frac{E_{kin}}{c^2} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

Hogyan mérhető a mag tömege?

- Tömegspektrometria
- Magreakciók energiaanalízise
- Az alfa- és bétabomlás energiaanalízise

Példa: (a neutron tömegének meghatározása)

A neutronok nemesgáz-atomokkal ütköznek, és az átadott maximális energiát mérjük, ami a centrális ütközéshez tartozik. Ekkor:

Impulzusmegmaradás:

$$m_n v = M v_M + m_n v'$$

Energiamegmaradás:

$$\frac{1}{2}m_nv^2 = \frac{1}{2}Mv_M^2 + \frac{1}{2}m_nv'^2$$

kifejezve v'-t:
$$2v = v_M \left(1 + \frac{M}{m_n}\right)$$

Beállított érték

Wilson-kamrás mérés

R~10⁻¹⁴m A magsugár

Hogyan mérhető?

a) Gyors neutronok szóródása

eredmény:

$$\sigma = R^2 \pi + R^2 \pi$$

(ez logikus) (de Broigle járulék a hullámtermészet miatt) 24

Két különböző nemesgázzal végezve ugyanazt a kísérletet (2 M érték), $m_{\rm n}$ meghatározható.

b) Müóniumatomok karakterisztikus röntgrnsugárzásának mérése

A K-elektronokhoz tartozó rádiusz:
$$(r_{\rm K})_e = \frac{\hbar^2}{Zm_e e^2}$$

 $m_{\mu} \sim 207m_{\rm e}$

Müónium atom:

Mivel a magsugár nem elhanyagolható a müon pályasugarához képest, a müonátmenetekhez rendelhető karakterisztikus röntgensugarak energiája függ a magsugártól.

c) Alfasugárzó nuklidok felezési idejének mérése

(Az alagúthatás hullámjelenség, valójában nem is szabadna a fentihez hasonló ábrát rajzolnunk...).

Az eredmény:

A: tömegszám r_0 : 1.2 to 1.4 fm

(fm = femtométer, 10⁻¹⁵ m)

Egyben a maganyag sűrűségének állandóságát mutatja!

(Ez atomoknál messze nem így van!)

Többféle magsugár is definiálható, és az egyes meghatározási módszerek is ezek valamelyikét mérik.

2017 04 06

Magerők

Alapvetően 4 fundamentális kölcsönhatást ismerünk: gravitációs, elektromágneses, erős, gyenge. (Standard modell)

A magot stabilizáló energiáért alapvetően a magerők felelősek. (ΔW). Ez olyan óriási, hogy tömegváltozásokból számítható:

$$\Delta M = \sum M_{nucleons} - M_{nucleus} \quad \Delta W = \Delta M c^2$$

A magerők speciális tulajdonságai:

- Szomszédos nukleonok esetén 2-3 nagyságrenddel meghaladják a Coulomberőket.
- Ennél távolabb viszont meredeken csökkennek (Yukawa potential):

- A magerők a magon belül telítettek, azaz lényegében csak a szomszédos nukleonokig hatnak.
- A magerők a nukleonspintől is függnek. PI: a deuteronban a proton és a neutron spinje mindig egy irányba mutat. Nem ismerünk két protonból álló magot (a Pauli-elv érvényben van két azonos és egymáshoz nagyon közeli részecskére)
- A magstabilitás függ a protonok és neutronok számának párosságától: páros-páros>páratlan-páros>páratlan-páratlan (a stabilitás csökken) párkölcsönhatás!
- A magerők bármilyen nukleonpárosítás esetén azonosak Kísérleti bizonyíték:

$$\Delta W \begin{pmatrix} {}^{3}_{1} \mathrm{H} \end{pmatrix} - \Delta W \begin{pmatrix} {}^{3}_{2} \mathrm{He} \end{pmatrix} = \frac{e^{2}}{\delta} = 0.75 \mathrm{MeV}$$

Ez éppen két szomszédos proton Coulomb-taszítás miatti potenciális energiája.

A magspin

A nukleonok pálya- és saját impulzusmomentumának összege!

```
Nukleon spin: <u>s</u>
Nukleon pályamomentum: <u>/</u>
```

A teljes impulzusmomentum: $\underline{i} = \underline{s} + \underline{l}$

A magspin:

$$\underline{I} = \sum_{i} \underline{j} = \sum_{i} \underline{s} + \sum_{i} \underline{l}$$

$$\uparrow \qquad \uparrow$$

$$S \qquad \underline{L}$$

Bármelyikük abszolút értéke:

$$|X| = h |X(X+A)| = \frac{h}{2\pi}$$

A mag állapotának leírásához mindhárom érték megadandó!

Betű szerinti jelölések (mint az atomszerkezetnél) L:

$$L = 0_1 \ 1_1 \ 2_1 \ 3_1 \ ...$$

 $S, P, D, F, G, H, ...$

A mag teljes állapota:

Példa:

$$25+1 \ L = 2 \ I = 7/2 \ J = 2 \ D_{7/2}$$

Néhány egyszerű szabály a magspin értékére alapállapotban a nukleonok párossága szerint:

p-p : nulla plan-plan: 1, 2, 3, p-plan: 1/2, 3/2, 5/2, A mágneses dipólusmomentum

$$\mu = g_I I \mu_N$$

$$g_I$$
: giromágneses faktor
 μ_N : mag magneton $\longrightarrow \mu_N = \frac{e\hbar}{2m_p} = 0.5051x10^{26} J/T$

Jóval kisebb a Bohr-magnetonnál!

A neutronnak is van mágneses momentuma...

A mag elektromos dipólusmomentuma

Nem figyelhető meg.

A mag és az elektronok kölcsönhatásának leírása

(a mag töltése az elektronok által létrehozott potenciáltérben)

$$E_{\rm C} = \int \rho_{\rm mag} \left(\mathbf{r} \right) V_{\rm el.} \left(\mathbf{r} \right) \mathrm{d}\tau$$

V_{el.} Taylor-sorfejtésével:

$$E_{C} \approx V_{0} \int \rho(\mathbf{r}) d\tau + \sum_{i=1}^{3} \left(\frac{\partial V}{\partial x_{i}} \right)_{0} \int \rho(\mathbf{r}) x_{i} d\tau + \frac{1}{2} \sum_{i,j=1}^{3} \left(\frac{\partial^{2} V}{\partial x_{i} \partial x_{j}} \right)_{0} \int \rho(\mathbf{r}) x_{i} x_{j} d\tau$$
magtöltés dipólusmomentum

Ebben a kifejezésben az első tag a kölcsönhatás <u>ponttöltés közelítését</u> írja le, az integrál maga a magtöltés.

A második tag zérus, mivel a magnak a paritás-megmaradás miatt nem lehet dipólusmomentuma.

A harmadik tag a kvadrupóluskölcsönhatást írja le.

A koordinátarendszer alkalmas elforgatásával V második deriváltját, az elektromostérgradienstenzort diagonalizáljuk. Ekkor E_c harmadik tagja:

$$E_3 = \frac{1}{2} \sum_{i=1}^3 \left(\frac{\partial^2 V}{\partial x_i^2} \right)_0 \int \rho(\mathbf{r}) x_i^2 d\tau \equiv \frac{1}{2} \sum_{i=1}^3 V_{ii} \int \rho(\mathbf{r}) x_i^2 d\tau$$

Ebben a kifejezésben a három térbeli koordináta tetszés szerint változik. Célszerű azonban mesterségesen elkülöníteni egy olyan tagot, amelyben a három koordináta egyenrangú, ami nem jelent mást, mint a kölcsönhatás gömbszimmetrikus részének a leválasztását. Ezt megtéve, felhasználva azt, hogy a koordináták egyenrangúsága esetén

$$r^{2} = \sum_{i=1}^{3} x_{i}^{2} = 3x^{2}$$

$$E_{3} = \frac{1}{2} \sum_{i=1}^{3} V_{ii} \int \rho(\mathbf{r}) \frac{r^{2}}{3} d\tau + \frac{1}{6} \sum_{i=1}^{3} V_{ii} \int \rho(\mathbf{r}) (3x_{i}^{2} - r^{2}) d\tau$$
Mag-kvadrupólusmomentum

A mag gömbszimmetrikus töltéseloszlás-járuléka

A mag kvadrupólusmomentuma

Megmutatható, hogy forgásellipszoid alakú magra: –

 $\rightarrow Q = \frac{2}{5}Z(a^2 - b^2)$

"prolát"

"oblát"

Saját kvadrupólusmomentum

Megfigyelhető kvadrupólusmomentum

(A kettő között a magspin és a mag forgásához rendelhető impulzusmomentum teremt kapcsolatot.)

Paritás

$$P = +1$$
 vagy -1

Pozitív paritás $\longrightarrow \mathcal{Y}(x,y,z) = \mathcal{Y}(-x,-y,-z)$ Negatív paritás $\longrightarrow \mathcal{Y}(x,y,z) = -\mathcal{Y}(-x,-y,-z)$ Kvalitatív megfontolások:

neutronok száma protonok száma protonok és neutronok számaránya

Weizsäcker szemiempirikus formulája:

$$\Delta W = \alpha A - \beta A^{2/3} - \gamma \frac{Z^2}{A^{1/3}} - \xi \frac{(A/2 - Z)^2}{A} \pm \delta A^{-3/4}$$

Magerők a magon belül

Kompenzálatlan magerők a mag felszinén

Coulomb-taszítás

Nem egyenlő számú proton és neutron

Párkölcsönhatás(p-p esetén pozitív, plan-plan esetén negatív)

Egy nukleonra jutó kötési energia ($lpha=\Delta W\!/\!A$)

(A-Z) - Z diagram vázlatosan:

Z-A-Z diagram egy kicsit részletesebben:

Neutronszám (N)

1. A cseppmodell

Ezt támasztják alá:

Konstans sűrűség
 A maghasadás jelensége
 ΔW/A nagyjából konstans (a könnyű nulidok kivételek)

2. A héjmodell

Ezt támasztják alá:

Mágikus számok (2, 8, 20, 28, 50, 82)
 A kvadrupólusmomentum értékei, változása (pl. mágikus számoknál nulla)

3. Kevert modellek....

A radioaktív bomlás

(Becquerel, 1896)

α-bomlás

→ $\lg \lambda = a + b \lg R_{\parallel}$

Bomlási energia (Q)

 $Q = \Delta A_r x 931.5$ (MeV)

- Alagúthatás
- Geiger-Nuttal-szabály —
- Diszkrét spektrum

Hatótávolság levegőben

Tipikus α-bomlási sémák:

3 altípusa létezik: β⁺ β⁻ EC (elektronbefogás)

Negatív bétabomlás:

2017.Apr 7.

$$_{Z}^{A}N \rightarrow_{Z+1}^{A}N + e^{-} + \overline{\nu}$$
 - [e⁻]

$${}^{A}_{Z}N \rightarrow {}^{A}_{Z-1}N + e^{+} + \nu + [e^{-}]$$

2 elektron nyugalmi tömege

Elektronbefogás

$$^{A}_{Z}N + e^{-} \rightarrow ^{A}_{Z-1}N + \nu + [e^{-}]$$

Miért nem csak az elektronbefogás megy végbe?

A neutrínó létezésének bizonyítéka:

Proton- és neutron-bomlás

Csak magasan gerjesztett atommagok produkálják (pl.hasadás után). 2016 apr 8

Spontán hasadás

$$Q_{fission} = 0.18A^{2/3} \left(5.2 - 0.117 \frac{Z^2}{A} \right)$$
 (MeV)

Végbemehet, ha $Z^2/A > 44.5$

Izomer átmenet

Gerjesztett atommagok legerjesztődése gamma kvantum kibocsátásával

 Analóg az atomi folyamatokkal, amikor elektronok gerjesztett állapota szűnik meg (UV, látható, röntgen)

- A felezési idők általában nagyon rövidek
- van néhány kivétel (119mSn)

$$=\frac{p_{electron}}{p_{gamma}}$$

α

A magreakciók energiája (Q):

$$Q = \left(1 + \frac{m_{\rm B}}{m_{\rm Y}}\right) E_{\rm B} - \left(1 - \frac{m_{\rm A}}{m_{\rm Y}}\right) E_{\rm A} - 2\frac{\sqrt{m_{\rm B}m_{\rm A}E_{\rm B}E_{\rm A}}}{m_{\rm Y}} \cos\theta$$

<u>Jelentősége</u>: A részecskék tömege jól meghatározható. Az energiákat Wilson-kamra segítségével mérik.

Néhány egyéb megmaradási törvény, amely figyelembe veendő:

Impulzusmomentum Elektromos töltés Bariontöltés (nukleonok száma) Paritás (magerők és elektromágneses kölcsönhatás esetén)

Reakciógátak

<u>Visszalökődési gát</u>

$$A \longrightarrow K \longrightarrow AK$$

$$E_{\rm A} + Q = E_{\rm AX}$$
 $E_{\rm A}m_{\rm A} = E_{\rm AX}(m_{\rm A} + m_{\rm X})$

$$Q = E_{\rm A} \left(1 - \frac{m_{\rm A}}{m_{\rm A} + m_{\rm X}} \right)$$

Tehát E_A nagyobb kell, hogy legyen, mint Q!

Elektrosztatikus gát

$$V = \frac{Z_A Z_X e^2}{r} \quad (r = R_A + R_X)$$

$$\frac{L_{\rm A}^2}{2\Theta_{\rm A}} = \frac{\hbar^2 (l+1)l}{2m_{\rm A}d^2} \xrightarrow{l=1} \frac{\hbar^2}{m_{\rm A}(R_{\rm A}+R_{\rm X})^2}$$

Magreakciók típusai

Neutronokkal kiváltott reakciók

Nincs elektrosztatikus gát! ---- Termikus reakciók

1/v törvény (minél hosszabb ideig tartózkodik a neutron a magban, annál nagyobb a reakció valószínűsége)

(n;γ) rekaciók

A neutronaktivációs analízisnél van jelentősége

Nagy energiájú kozmikus protonok reakcióiból (100 GeV fölött!)

Reakciók töltött részecskékkel

<u>a-részecskékkel:</u>

deuteronokkal:

Phillips-Oppenheimer mechanizmus (mára cáfolták....)

Nehéz ionokkal:

Transzuránok előállítása

PI:

$${}^{238}_{92} \mathcal{U} \left({}^{44}_{7} \mathcal{W}_{i} \approx 5 \mathcal{U} \right) {}^{243}_{97} \mathcal{B} \mathcal{L}^{*}_{}$$

Tipikusan10 MeV fölött!

Természetes gammasugárzók nem aktiválják a besugárzott anyagokat, azaz nem teszik azokat radioaktívvá!

Egy ritka kivétel:

$${}_{1}^{2}\mathbf{D}(\boldsymbol{\gamma},\mathbf{n})_{1}^{1}\mathbf{H}$$

(A ²²⁸Th 2.6 MeV-es γ–sugárzásával. A neutronok aktiválhatják a mátrixot csekély mértékben.)

Termonukleáris reakciók

p-p ciklus a Napban:

$${}^{1}_{1}H + {}^{1}_{1}H = {}^{2}_{1}D + e^{+}$$

$${}^{2}_{1}D + {}^{1}_{1}H = {}^{3}_{2}He + \gamma$$

$${}^{3}_{2}He + {}^{1}_{1}H = {}^{4}_{2}He + e^{+}$$

$${}^{4}_{1}H = {}^{4}_{2}He + 2e^{+} + \gamma + 25 \text{ MeV}!$$

A radioaktív bomlás kinetikája

Cél: A még el nem bomlott nuklidok számának kiszámítása tetszőleges időre.

Legyen annak valószínűsége, hogy egy nuklid ∆t idő alatt elbomlik p:

Annak valószínűsége, hogy ugyanezen idő alatt a nuklid nem bomlik el:

$$1 - p = 1 - \lambda \Delta t$$

t=n Δt egymást követő időintervallumokra a független valószínűségek alapján:

$$p(t) = \left(1 - p\right)^n = \left(1 - \lambda \frac{t}{n}\right)^n$$

Végtelenül sűrű felosztás esetén (n végtelen):

$$\lim_{n\to\infty} \left(1 - \frac{t\lambda}{n}\right)^n = \exp(-\lambda t)$$

Tetszőleges *N*₀ számú nuklidból kiindulva így:

$$N_t = N_0 \exp(-\lambda t)$$

A monomolekulás reakciók szokásoso elsőrendű kinetikájával operaálva ugyanezt az eredményt kapjuk:

olt No [lu N] No lu N - lu No N. -26 = Noe

Vigyázat! Ez a sebességi állandó nem írható fel a termikus folyamatokra megszokott módon!

2015 apr 21

A bomlás sebessége:

$$-\frac{dN}{dt} = \lambda N = N_0 \lambda \exp(-\lambda t)$$

Ezt nevezzük abszolút aktivitásnak (időegységenként bekövetkező bomlások száma)

SI egység: 1 becquerel (1Bq) - 1 bomlás per 1 másodperc (s⁻¹)

Felezési idő ($t_{1/2}$):

$$\frac{N_0}{2} = N_0 e^{-\lambda t_{1/2}} \longrightarrow \lambda = \frac{\ln 2}{t_{1/2}}$$

Átlagos élettartam:

$$\overline{T} = \frac{\nabla_{n} \Delta N_{n} + \nabla_{n} \Delta N_{n} + \cdots + \nabla_{n} \Delta N_{n} + \cdots}{\sum_{N_{n}} \Delta N_{n}}$$

$$\overline{T} = \frac{1}{N_{0}} \cdot \sum_{n=0}^{\infty} \overline{T}_{n} \Delta N_{n} \xrightarrow{\Delta N=0} \frac{1}{N_{0}} \int_{\nabla} T dN$$
Mivel:
$$\frac{dN}{dt} = -\lambda N \text{ és igy} \quad dN = -\lambda N dt = \\= -\lambda N_{0} e^{-\lambda t} dt,$$
végül:
$$\overline{T} = -\frac{1}{N_{0}} \int_{\Delta} N_{0} T e^{-\lambda T} = -\lambda \int_{\nabla} T e^{-\lambda T} dT$$

$$\overline{T} = -\frac{1}{N_{0}} \int_{\Delta} N_{0} T e^{-\lambda T} dt = -\lambda \int_{\nabla} T e^{-\lambda T} dT$$

$$T = -\frac{1}{N_{0}} \int_{\Delta} N_{0} T e^{-\lambda T} dt = -\lambda \int_{\nabla} T e^{-\lambda T} dT$$

$$\overline{\tau} = \int_{0}^{\infty} \frac{t\lambda Ndt}{N_{0}} = \int_{0}^{\infty} t\lambda e^{-\lambda t} dt = \lambda \left[\frac{e^{-\lambda t}}{\lambda^{2}} \left(-\lambda t - 1\right)\right]_{0}^{\infty} = \frac{1}{\lambda}$$

A bomlások speciális esetei:

Elágazó bomlás:

 $-\frac{dN}{dt} = (\lambda_1 + \lambda_2)N$ Az A nuklid bomlása: $\frac{dN}{N} = -(\lambda_1 + \lambda_2)dt$ Ebből:

Így ha 0 időpontban N_0 mennyiség volt A-ból: $N=N_0e^{-(\lambda_1+\lambda_2)t}$

Bármely időpillanatra igaz, hogy a két leányelem mennyiségének összege megegyezik az elbomlott magok számával:

$$N_{B} + N_{C} = N_{0} - N = N_{0} \left(1 - e^{-(\lambda_{1} + \lambda_{2})t} \right)$$

A leányelemek keletkezésének sebessége:

$$\frac{dB}{dt} = \lambda_1 N = \lambda_1 N_0 e^{-(\lambda_1 + \lambda_2)t}$$

$$\frac{dC}{dt} = \lambda_2 N = \lambda_2 N_0 e^{-(\lambda_1 + \lambda_2)t}$$

Integrálva *t*=0 és *t*=∞ között:

$$B = \left[-\frac{\lambda_1}{\lambda_1 + \lambda_2} N_0 e^{-(\lambda_1 + \lambda_2)t} \right]_0^\infty \qquad C = \left[-\frac{\lambda_2}{\lambda_1 + \lambda_2} N_0 e^{-(\lambda_1 + \lambda_2)t} \right]_0^\infty$$

Amiből:

$$B = \frac{\lambda_1}{\lambda_1 + \lambda_2} N_0 \qquad \text{illetve:} \qquad C = \frac{\lambda_2}{\lambda_1 + \lambda_2} N_0$$

Így a logikusan is elvárható:

$$\frac{B}{C} = \frac{\lambda_1}{\lambda_2}$$

Eredmény adódik.

A kérdés A és B aktivitása.

Az A aktivitása egyszerűen számítható, hiszen csak saját bomlásáról van szó:

$$A_A = \lambda_1 N_A = \lambda_1 N_{0,A} e^{-\lambda_1 t}$$

A B aktivitása már kissé komplikáltabb, mivel keletkezik A-ból, miközben önmaga bomlik:

$$\frac{dN_B}{dt} = \lambda_1 N_A - \lambda_2 N_B$$

Behelyettesítve:

$$\frac{dN_B}{dt} = \lambda_1 N_{0,A} e^{-\lambda_1 t} - \lambda_2 N_B$$

Lineáris inhomogén elsőrendű differenciálegyenlet

Lásd megoldóképlet táblázatból....

$$N_B = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{0,A} \left[e^{-\lambda_1 t} - e^{-\lambda_2 t} \right]$$

Aktivitásokkal felírva:

$$A_{B} = N_{B}\lambda_{2} = \frac{\lambda_{2}\lambda_{1}}{\lambda_{2} - \lambda_{1}}N_{0,A}\left[e^{-\lambda_{1}t} - e^{-\lambda_{2}t}\right]$$

A leányelem aktivitásának mindig lesz egy maximuma, ez akkor következik be, amikor matematikailag:

$$\frac{dN_B}{dt} = -\frac{\lambda_1 \lambda_1}{\lambda_2 - \lambda_1} N_{0,A} e^{-\lambda_1 t} + \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} N_{0,A} e^{-\lambda_2 t} = 0$$

Ebből:
$$t_{max} = \frac{1}{\lambda_1 - \lambda_2} \ln \frac{\lambda_1}{\lambda_2}$$

A bomlási állandók arányától függően radiokatív egyensúlyok alakulhatnak ki.

Mozgó (tranziens) egyensúly.

Feltétel:

$$A_{B} = \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} A_{A}$$

Az aktivitások aránya állandó!

Ekkor bizonyos t idő eltelte után:

67

Örök (szekuláris) egyensúly.

Feltétel:

$$\lambda_1 < < \lambda_2$$

Ekkor bizonyos t idő eltelte után:

$$N_B = \frac{\lambda_1}{\lambda_2} N_{0,A} e^{-\lambda_2 t}$$

$$N_B \lambda_2 = N_A \lambda_1$$

Az aktivitások azonosak!

2016 apr 12

Ha

 $\lambda_1 > \lambda_2$

nincs egyensúly

Természetes bomlási sorok

Az U-238 bomlási sora

Az U-235 bomlási sora

A Th-232 bomlási sora

Kormeghatározás radioaktív bomlás alapján:

Geológiai időskálán:

$$N_{20C} = N_{23S,0} - N_{23S}(t) = N_{23S,0} \left[1 - e^{-\lambda t}\right]$$

Így:
$$\frac{N_{206}(4)}{N_{238}(4)} = \frac{N_{238,0}(1-e^{-24})}{N_{238,0}\cdot e^{-24}} = e^{-24} - 1$$

Ugynezt felhasználva az 23.5 207 76 bomlási sorra:

$$\frac{N_{207}}{N_{206}} = \frac{1}{139} \left(\frac{e^{\lambda_{255}t} - 1}{e^{\lambda_{258}t} - 1} \right)$$

Archeológiai időskálán:

¹⁴C felhasználásával felezési idő: 5730 év

2017 apr 22

1. feladat:

Bizonyítsuk be, hogy az alábbi konszekutív bomlásban a leányelem felezési idejének eltelte után annak aktivitása az anyaelem kezdeti aktivitásának a fele lesz, amennyiben $\lambda_1 \ll \lambda_2$.

m> B -12 21. NA.0 a kezdeti aktivitás: *t* idő múlva:: $A_{g}(t) = \lambda_{2} N_{g}(t) = \frac{\lambda_{2} \lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{A_{1}0} \left(e^{-\lambda_{1} t} - e^{-\lambda_{2} t} \right)$ $T_2 \equiv T_{1/2}, B$ τ_2 idő elteltével: $A_{\mathcal{B}}(t=\tau_2) = N_{A_1} - \tau_2$

2. feladat:

Adott a következő hipotetikus bomlási sor a feltüntetett felezési időkkel:

c) 200 év!

(4*A*, 2,5 *A*, *A*)

Nukleáris mérések statisztikája, speciális matematikai konstrukciók

Matematikai (valószínűségszámítási) emlékeztető....

Diszkrét vátozósFolytonos vátozósVárható érték: $E(X) \equiv \sum_{\forall i} x_i p_i$ $E(X) \equiv \int_{-\infty}^{+\infty} x f(x) dx$ Integrális eloszlásfüggvény: $F(x) \equiv \sum_{\forall i: x_i < x} p_i$ $F(x) \equiv \int_{-\infty}^{x} f(u) du$

Differenciális eloszlásfüggvény (sűrűségfüggvény):

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$$

A gyakorlatban becslésekre szorítkozunk, ezért:

Empirikus várható érték:

$$\overline{X} \equiv \frac{1}{n} \sum_{k=1}^{n} X_k$$

Empirikus szórásnégyzet:

$$s^{2} = \frac{1}{n} \sum_{k=1}^{n} (X_{k} - \mu)^{2}$$

Mi a valószínűsége annak, hogy adott idő alatt *n* atommagból éppen *x* bomlik el, ha egy atom elbomlási valószínűsége *p*?

Binomiális eloszlás

$$P(X = x; n, p) = \binom{n}{x} p^{x} q^{n-x} \quad (x = 0, 1, \dots, n) \dots q = 1 - p$$

Várható érték: ... $\mu \equiv np$

Variancia:
$$npq = \mu q$$

Mi a valószínűsége annak, hogy adott idő alatt *n* atommagból éppen *x* bomlik el, ha egy atom elbomlási valószínűsége *p* úgy, hogy *n* lényegesen nagyobb *x*-nél?

Poisson-eloszlás

$$P(X = x; \mu) = \frac{\mu^x}{x!} e^{-\mu} \quad (x = 0, 1, 2, ...)$$

Várható érték: µ

Milyen lesz a bomló atomok élettartam-eloszlása?

Exponenciális eloszlás

Miért kell nekünk mindez?

A nukleáris mérések során általában eseményeket számolunk.

Igen nagy számú atomsokaság véletlenszerűen bomlik.....

A gyakorlatban adott ideig mérünk egy "beütésszámot", (ami arányos az aktivitással): *N*

Ennek "hibája": \sqrt{N}

Mindig szükséges a háttér korrekciója (levonása). Ilyenkor mekkora lesz a hiba?

Gauss-hibaterjedés

 $D^{2}(f) \approx \sum_{i=1}^{n} \left| \left(\frac{\partial f}{\partial x_{i}} \right)_{x=0}^{2} D^{2}(x_{i}) \right|$

Független valószínűségi változók esetén használható, de ez általában teljesül.

A háttérrel korrigált beütésszám-függvény: F(N, Nh) = N-Nh

Poisson miatt: $D^2(N)=N$ $D^2(Nh)=Nh$

mivel
$$\frac{\partial F}{\partial N} = 1$$
 $\frac{\partial F}{\partial Nh} = -1$

Ezért az eredő hiba: $\sqrt{N + Nh}$

A módszer bármilyen függvénykapcsolatra használható, de mivel csak első deriváltakat tartalmaz (lineáris közelítés), csak kis hibák esetén ad jó becslést!

Nukleáris spektrumok mérésénél a detektorok általában nem kellően szűk intervallumban mérik a spektrum egy pontját, hanem a detektorra is egy detektálási hatásfok-eloszlásfuggvény adható meg.

A mérés eredménye a detektorfüggvény és a mérendő célfüggvény konvolúciója:

$$f_{X+Y}(z) = f_X * f_Y(z) \equiv \int_{-\infty}^{+\infty} f_X(z-u) f_Y(u) du$$

Példa: (Mössbauer-spektrum felvétele)

Fourier-transzformáció

$$f\left(t
ight)=rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}F\left(j\omega
ight)e^{j\omega t}\,d\omega$$

Inverz Fourier-transzformáció

$$F\left(j\omega
ight)=rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}f\left(t
ight)e^{-j\omega t}\,dt$$

időfüggés 🔶 frekvenciafüggés

Mérési kondíció: Idő domén

Pl. impulzusüzemű szinkrotronnál

Energia domén

"otthon a laborban"

$$T(x)=\sum_{n=0}^\infty rac{f^{(n)}(a)}{n!}(x-a)^n$$

Mag-elektron-kölcsönhatás (lásd korábban is)

$$E_{C} \approx V_{0} \int \rho(\mathbf{r}) d\tau + \sum_{i=1}^{3} \left(\frac{\partial V}{\partial x_{i}} \right)_{0} \int \rho(\mathbf{r}) x_{i} d\tau + \frac{1}{2} \sum_{i,j=1}^{3} \left(\frac{\partial^{2} V}{\partial x_{i} \partial x_{j}} \right)_{0} \int \rho(\mathbf{r}) x_{i} x_{j} d\tau$$

magtöltés dipólusmomentum
$$E_{3} = \frac{1}{2} \sum_{i=1}^{3} V_{ii} \int \rho(\mathbf{r}) \frac{r^{2}}{3} d\tau + \frac{1}{6} \sum_{i=1}^{3} V_{ii} \int \rho(\mathbf{r}) (3x_{i}^{2} - r^{2}) d\tau$$

kvadrupólusmomentum

Khi-négyzet próba

Az illesztett modell jóságának a vizsgálata. (Az elméleti és a tényleges szórás aránya.)

$$\chi^{2}(\underline{\nu}) = \sum_{i=1}^{h} \frac{(W_{i} - f_{i}(\underline{\nu}))^{2}}{W_{i}}$$

Példa: Mössbauer-spektrum

A sugárzások és az anyag kölcsönhatása

A kölcsönhatások mindig kétoldalúak....

Mi történhet az anyaggal?
Elektrongerjesztés
Maggerjesztés

□Magreakció

Mi történhet a sugárzással?

Szóródás (irányváltozás, jelentős energiaátadás nélkül)

- Ütközéses fékeződés
- Sugárzásos energiavesztés
- Abszorpció
- Konverzió más részecskévé

Az α-sugárzás és az anyag közötti kölcsönhatás

A kölcsönhatásban	A bekövetkezett változás		
résztvevő	sugárzásban	anyagban	
anyagrész			
Héjelektron	fékeződés,	gerjesztés,	
	abszorpció	ionizáció,	
		kémiai változás	
Az atommag erőtere	szóródás,		
	fékeződés,		
Az atommag	abszorpció	új nuklid keletkezése	
	magreakció		

Az α -részecskék ütközéses energiavesztése (fékeződése)

Csak az elektronokkal való kölcsönhatást tekintjük!

$$p_x = \int_{-\infty}^{+\infty} F_x dt \qquad p_y = \int_{-\infty}^{+\infty} F_y dt$$

A fellépő Coulomb-erők:

$$F_x = \frac{Ze^2}{r^2} \cos \Theta$$
 $F_y = \frac{Ze^2}{r^2} \sin \Theta$

mivel
$$r = \frac{b}{\sin \Theta}$$

 $F_x = \frac{Ze^2}{b^2} \sin^2 \Theta \cos \Theta$ illetve

$$F_{y} = \frac{Ze^{2}}{b^{2}}\sin^{3}\Theta$$

Az idő szerinti integrált a következő módon alakíthatjuk át szög szerinti integrállá:

$$tg\Theta = -\frac{b}{v_{\alpha}t} \longrightarrow t = -\frac{b}{v_{\alpha}}ctg\Theta \longrightarrow dt = \frac{b}{v_{\alpha}}\frac{1}{\sin^2\Theta}d\Theta$$

Behelyettesítésekkel adódik az impulzusokra, hogy:

$$p_x = \int_0^{\pi} \frac{Ze^2}{bv_{\alpha}} \cos \Theta d\Theta = \frac{Ze^2}{bv_{\alpha}} [\sin \Theta]_0^{\pi} = 0$$

$$p_{y} = \int_{0}^{\pi} \frac{Ze^{2}}{bv_{\alpha}} \sin \Theta d\Theta = \frac{Ze^{2}}{bv_{\alpha}} \left[-\cos \Theta \right]_{0}^{\pi} = \frac{Ze^{2}}{bv_{\alpha}} \left(-1 - 1 \right) = -\frac{2Ze^{2}}{bv_{\alpha}}$$

Így az elektronnak átadott kinetikus energia:

$$E_{e} = \frac{p_{y}^{2}}{2m_{e}} = \frac{2Z^{2}e^{4}}{m_{e}b^{2}v_{a}^{2}}$$

Az α -részecskét a dx úton előrehaladva a térben hengeres héj veszi körül, melynek térfogata $2\pi b^* db^* dx$. Ha egységnyi térfogatban n számú Z' rendszámú atom található, akkor az abban foglalt elektronoknak átadott energia:

Mit válasszunk *b*_{min} és *b*_{max}-ra?

 b_{\min} esetén a legnagyobb Coulomb erőnek kell hatnia és ekkor a legnagyobb az átadott energia.

Utóbbit klasszikus mechanikus rugalmas ütközésből számítva:

Impulzusmegmaradás::

$$m_{\alpha}v_{\alpha} = m_{\alpha}v_{\alpha}^{*} + m_{e}v_{e} \qquad \qquad \frac{m_{\alpha}v_{\alpha}^{2}}{2} = \frac{m_{\alpha}v_{\alpha}^{2}}{2} + \frac{m_{e}v_{e}^{2}}{2}$$
amiből: $v_{e} = \frac{2v_{\alpha}}{1 + \frac{m_{e}}{m_{\alpha}}} \approx 2v_{\alpha}$

$$E_{max} = 2m_{e}v_{\alpha}^{2}$$
Behelyettesítve az
átadott energia
egyenletébe: $b_{min} = \frac{Ze^{2}}{m_{e}v_{\alpha}^{2}}$
Egyéb
megfontolások $\longrightarrow b_{max} = \frac{Ze^{2}}{aI}$
Végül: $\frac{dE}{dx} = \frac{4Z^{2}e^{4}\pi n}{m_{e}v_{\alpha}^{2}}Z^{*} \ln \frac{m_{e}v_{\alpha}^{2}}{aI}$

Relativisztikus esetben: (Bethe-Bloch)

$$\frac{dE}{dx} = \frac{4Z^2 e^4 \pi n}{m_e v_\alpha^2} Z' \left[\ln \frac{2m_e v_\alpha^2}{I} - \ln \left(1 - \frac{v^2}{c^2} \right) - \frac{v^2}{c^2} \right]$$

Tipikus hatótávolság levegőben: 1 cm/MeV

<u>Fő tanulság</u>: minél nagyobb az alfaenergia, annál kisebb az egységnyi úton átadott energia! (kb. 500 keV fölött)

Ionpár	
levegőben	
40 000	
56 000	
54 000	
46 000	
41 000	
32 000	
26 000	
22 000	
13 000	
10 300	
6 500	
2 900	
2 200	
400	
210	

Az α -részecskék szóródása

Az alfa-részecskék a magot közelítve hiperbola-pályára kényszerülnek:

Energiamegmaradás:

$$\frac{1}{2}m_{\alpha}v_{0}^{2} = \frac{1}{2}m_{\alpha}v^{2} + \frac{Ze^{*}2e}{q}$$

Impulzusmomentum-megmaradás:

$$m_{\alpha}v_0 p = m_{\alpha}vq$$

m_α az alfa-részecske tömege,
v_o a kezdeti sebessége, *v* az A pontban meglévő sebessége, *q* a FA távolság, *Ze* az atommag töltése,
2*e* az alfa-részecske töltése, *p* az atommagnak az alfa-részecske eredeti
pályavonalától való távolsága.

A két megmaradási tétel alapján és a hiperbola egyenletét felhasználva::

$$\operatorname{ctg}\frac{\varphi}{2} = \frac{pMv_{\alpha}^2}{2Ze^2}$$

N kezdeti α-fluxus és n atommagsűrűség esetén az összefüggés a φ irányban szórt α-részecskék, a φ szög és a kezdeti α-energia között:

$$N_{\phi} = \frac{NndZ^2e^4}{\sin^4\frac{\varphi}{2}m_{\alpha}^2v_0^4}$$

Az eddigiekben az atommagokat rögzítettnek tekintettük (csak szórás, elhanyagolható energiaátadás).

Visszalökődésre képes atommag esetén (pl. gáz, folyadék):

Összefüggés a szög, a szórt α-részecske energiája és a tömegszám között!

$$E_{\varphi} = E_0 \left(\frac{\frac{4}{A}\cos\varphi + \sqrt{1 - \left(\frac{4}{A}\right)^2 \sin^2\varphi}}{1 + \frac{4}{A}} \right)^2$$

A β-sugárzás és az anyag közötti kölcsönhatás

A kölcsönhatásban	A bekövetkezett változás		
résztvevő	a sugárzásban	az anyagban	
anyagi rész			
Héjelektronok	fékeződés,	gerjesztés,	
	szóródás	ionizáció,	
		kémiai változás	
Az atommag	fékeződés,		
erőtere	szóródás,		
	abszorpció		
Atommag	Nem lépnek kölcsönhatásba		

Az α-sugárzás esetében látott levezetéshez hasonlóan:

$$-\left(\frac{dE}{dx}\right)_{ion} = \frac{4\pi e^4 n}{m_e v_\beta^2} Z' \ln \frac{1,66m_e v_\beta^2}{2I} \qquad \text{Ha } E_\beta < m_e c^2$$

$$\frac{Utközéses}{kinetikusenergia-átadás!}$$

$$-\left(\frac{dE}{dx}\right)_{ion} = \frac{2\pi e^4 n}{m_e c^2} Z \ln \left(\frac{E^3}{2m_e c^2 I^2} + \frac{1}{8}\right) \qquad \text{Ha } E_\beta > m_e c^2 \qquad \text{interval}$$

$$Ha E_\beta > m_e c^2 \qquad \text{interval}$$

$$\left(-\left(\frac{dE}{dx}\right)_{r} = \frac{4ne^{2}Z^{2}}{137m_{e}^{2}c^{4}}\left(E + m_{e}c^{2}\right)\left[\ln\frac{2\left(E + m_{e}c^{2}\right)}{m_{e}c^{2}} - \frac{1}{3}\right]\right)$$

Energiavesztés fékezési röntgensugárzás kibocsátásával!

2017 apr. 27

A kétféle energiavesztési mechanizmus aránya rendszámfüggő:

dEdxrtg 800 dx

Nagy rendszámú anyagok esetén a bétasugárzás elnyelése mellett annál sokkal egészségkárosítóbb röntgensugárzás keletkezik!

Összefoglalva:

A formula közelítő, mert:

➤A lassuló elektron többször lép kölcsönhatásba az anyaggal, nem csak egyszer egy azonnali abszorpcióval

Az ütközések során lassul, és ezáltal változik a tömegabszorpciós tényező nagysága
 Az esetlegesen kiszóródott béta részecske (a detektor számára "eltűnt", abszorbeálódott) visszaszóródhat.

A tömegabszorpciós együtthatónak a maximális béta-energiától $(E_{\beta max}$ -tól) és az abszorbens rendszámától (Z) való függését a fenti okok miatt főképp empirikus egyenletekkel lehet leírni.

$$\mu = \frac{35Z}{M_a E_{\beta \max}^{1,14}} \quad Z<13 \qquad \mu = \frac{7,7Z^{0,31}}{E_{\beta \max}^{1,14}} \quad Z>13$$
A Lambert-Beer
leírásból nem is
következik, de
definiálnak β-
hatótávolságot
energiaintervallumok
szerint változó empirikus
formulákkal. PI:
$$E_{\max} > 1 \text{ MeV esetén:} \quad R = 0,571E_{\max} - 0,161$$

0 21

Az R hatótávolság g/cm²-ben, az energia MeV-ben értendő.

Néhány β-sugárzó izotóp abszorpciós jellemzői

Izotóp	Maximális	Tömegabszorciós	Felezési	Hatótávolság,
	energia,	együttható, μ	rétegvastagság	R
	E _{max}	cm ² /g	, d _{1/2}	g/cm ²
	MeV		g/cm ²	
^{14}C	0,165	261	0,0025	0,031
³⁵ S	0,167	243	0,0028	0,033
⁴⁵ Ca	0,254	128	0,0051	0,062
⁶⁵ Zn	0,325	96	0,0072	0,086
²⁰⁴ Tl	0,765	32	0,022	0,280
³² P	1,718	10,7	0,065	0,795
⁹⁰ Y	2,25	7,5	0,093	1,090

Ködkamra-felvételek alfa- és bétasugárzásról:

A béta-sugarak önabszorpciója

Miért kell erről beszélni?

Egy többnyire szilárd halmazállapotú bétaforrásból nem tud maradéktalanul emittálódni minden béta-részecske, mivel a hatótávolság csekély (legfeljebb mm-ek)

Ebben a gondolatmenetben implicite **állandó összes aktivitást** tételeztünk fel (I_0 állandó), amely változó *d* rétegvastagság esetén szolgáltatja a kiszámított kilépő intenzitást.

Amennyiben **állandó fajlagos aktivitású** ($I_{0,f}$) mintából készítünk egyre vastagabb réteget, a kilépő intenzitás számítása a következőképp alakul:

$$dI = I_{0,f} \exp\left(-\mu x\right) dx$$

$$I = \int_{0}^{d} I_{0,f} \exp(-\mu x) dx = \frac{I_{0,f}}{\mu} \left[1 - \exp(-\mu d)\right]$$

Mivel $I_{0,f}/\mu$ állandó, és végtelen *d* esetén éppen ehhez tart az intenzitás, a szokásos írásmód:

$$I = I_{\infty} [1 - \exp(-\mu d)]$$

Figyelembe veendő mind az elektronhéjról, mind a mag erőteréről történő visszaszóródás.

A TI-204 béta-spektruma, valamint a különböző rendszámú anyagokról visszaszórt sugárzás spektruma:

Energiafüggés:

Rendszámfüggés:

A visszaszórt intenzitás számítása:

Az x mélységig behatoló sugárintenzitás:

 $I_x = I_0 \exp\left(-\mu x\right)$

Az dx mélységből visszaszórt intenzitás, ha a 180 fokban szórt hányad *v*: (Az intenzitás ugyanazon az üton ismét abszorpciót szenved.):

$$dI_x = vI_0 \exp(-\mu x) \exp(-\mu x) dx = vI_0 \exp(-2\mu x) dx$$

d vastagságra integrálva:

(telítési jelleg)

$$I = \int_{o}^{d} dI_{x} = \frac{v}{2\mu} I_{0} \left[1 - e^{-2\mu d} \right]$$

Végtelen rétegvastagság esetén:

$$I_{\infty} = I_0 \frac{\nu}{2\mu}$$

A többszörös szóródás során μ folyamatosan változik, ezért ez a formula durva közelítés!

A rendszámfüggés komplikált, ezért empirikus formulákat alkalmaznak:

 $R = \frac{I_{\infty}}{I_0} = \frac{A \text{ vizsgálandó anyag végtelen vastag rétegéről visszaszóródó elektronok száma}{a \text{ vizsgálandó anyagra beeső összes elektronok száma}$

Müller szerint: R = aZ + b, ahol:

Periódus	Ζ	a	b	R
II.	2-10	1,2311	-2,157	0,3-10,2
III.	10-18	0,96731	0,476	10,2-17,9
IV.	18-36	0,68582	5.556	17,9-30,3
V.	36-54	0,34988	17,664	30,3-36,6
VI.	54-86	0,26225	22,396	36,6-45

Korlátozott érvényesség!

Pl. Vértes Attila szerint a hidrogénhez hipotetikus 7,434 rendszámot kell hozzárendelni.

Különleges β-anyag kölcsönhatások:

A pozitronannihiláció

Pozitív bétasugárzás esetén - lévén a pozitron antianyag - mindig bekövetkezik annihilációja:

 e^+ + e^- = 2γ

A szétsugárzódás szöge 180 fok.

(Ritkán: 1 γ vagy 3 γ annihiláció)

Élettartam: 10⁻¹⁰ s

nov14

Kétgamma annihiláció esetén az észlelt gammaenergia mindig 511 kev!

A pozitron csak termalizálódás után annihilálódhat egy elektronnal.

Egzotikus atom keletkezhet: pozitróniumatom.

Vavilov–Cserenkov-sugárzás

Adott közegben a fénysebességnél gyorsabban mozgó töltött részecskék sugárzással veszítenek energiát.

Ez béta elektronokra vízben gyakran teljesül (0,26 MeV fölött)!

Miért lehetséges?

Amennyiben végbemegy, teljesülnie kell, hogy:

$$\left(\frac{dE}{dp}\right)_{részecske} = \left(\frac{dE}{dp}\right)_{sugárzás}$$

Részecskére:

$$\left(\frac{dE}{dp}\right)_{r\acute{e}szecske} = \frac{d\sqrt{m_0^2c^4 + p^2c^2}}{dp} = \frac{pc^2}{E} = \beta c = v$$

A sugárzásra::

$$\left(\frac{dE}{dp}\right)_{sugárzás} = \frac{dpc}{dp} = c$$

Vákuumban e kettő egyszerre nem teljesülhet, mivel a vákuumbeli fénysebességet nyugalmi tömeggel rendelkező részecske nem érheti el.

n törésmutatójú közegben lehetséges, hogy:

 $v \ge c' = c/n$

Ilyenkor az impulzusmegmaradás törvénye következtében az elektron repülési irányától eltérően, φ szögben történik fényemisszió:

 $\varphi = \arccos(c/nv)$

A felrajzolt geometriának megfelelően a 0 és *t* időpontban kilépő fotonok (*φ* szögben) 0 útkülönbséggel rendelkeznek, így interferálnak.

A frekvencia és az intenzitás Összefüggése:

$$I(v) = \frac{2\pi e^2}{c^2} v \left[1 - \frac{c^2}{n^2 v^2} \right] f$$

(A frekvenciával való növekedés miatt kékeslila a Cserenkov-fény.

A y-sugárzás és az anyag közötti kölcsönhatás

А	Abszorpció	Szóródás	
kölcsönhatásba		Rugalmas	Rugalmatlan
lépő anyag			
Héjelektronok	Fotoeffektus	Rayleigh-szóródás	Compton-
	$\sigma \sim Z^4$	$\sigma \sim Z^2$	szóródás
		Thomson-	σ~Z
		szoródás	
		$\sigma \sim Z$	
Coulomb-tér	Párképződés		
	$\sigma \sim Z^2$		
Atommagok	Fotomagreakciók	(γ,γ) magreakció	(γ,γ [,])
	(magfotoeffektus)	$\sigma \sim Z$	magreakció
	(γ,n); (γ,p)		
	σ ~ Z		
	Rezonancia-		
	abszorpció		
	Mössbauer-effektus		

A Compton-szóródás

Gamma-sugarak rugalmatlan^a szóródása szabad^b elektronokon

^aA sugárzás frekvenciája csökken a szórás után.
 ^bÉrtsd: nincs jelentősége annak, hogy az elektron kötött (csak kötött elektron van a környezetünkben...)

Fontos: ebben a kölcsönhatás-típusban az elektron és a foton is *részecskeként* viselkedik (korpuszkuláris jelenség)

Mekkora a közegnek (a meglökött elektronnak) átadott energia?

Energiamegmaradás:

$$h v_0 = h v + E_c$$

Impulzusmegmaradás:

$$\frac{hv_0}{c} = \frac{hv}{c}\cos\vartheta + p_e\cos\varphi$$
$$0 = \frac{hv}{c}\sin\vartheta - p_e\sin\varphi$$

Kénytelenek vagyunk relativisztikus képletekkel számolni a gamma-foton miatt...

Így a Compton-elektron kinetikus energiája és impulzusa:

$$E_{c} = m_{0}c^{2} \left(\frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} - 1 \right) \qquad p_{e} = mv = \frac{m_{0}v}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

Az impulzusmegmaradást leíró két egyenletből a φ szöget kiejtve az elektron impulzusnégyzete:

$$p_e^2 = \left(\frac{hv_0}{c}\right)^2 + \left(\frac{hv}{c}\right)^2 - 2\left(\frac{hv_0}{c}\right)\left(\frac{hv}{c}\right)\cos\vartheta$$

Az energiamegmaradást és a relativisztikus impulzust felhasználva:

$$\left(\frac{hv_0}{m_0c^2} - \frac{hv}{m_0c^2} + 1\right) - 1 = \left(\frac{hv_0}{m_0c^2}\right) + \left(\frac{hv}{m_0c^2}\right) - 2\frac{hv_0hv}{(m_0c^2)^2}\cos\vartheta$$

Ebből a foton frekvenciájának csökkenése:

$$v_0 - v = \frac{h v_0 v}{m_0 c^2} (1 - \cos \theta)$$

Energiává konvertálva:

$$hv_0 - hv = \frac{hv_0 hv}{m_0 c^2} (1 - \cos \theta) = E_0 - E = \frac{E_0 E}{0.51} (1 - \cos \theta)$$

Ebből az energiaveszteség:

$$\Delta E = \frac{E_0^2 (1 - \cos \vartheta)}{E_0 (1 - \cos \vartheta) + 0.51}$$

Ebből következően van egy maximálisan átadható energia (180 fokos visszaszórásnál):

A hatáskeresztmetszet:

 <u>rendszámfüggés</u> (egyenes arányosság, mivel az anyagban lévő elektronok koncentrációja közelítőleg arányos a rendszámmal)

 <u>energiafüggés</u> (erősen csökkenő – ez nem következik az iménti levezetésből, csak abból az általános korpuszkuláris folyamatokra alkalmazható elvből vezethető le, hogy az energia/sebesség növekedésével csökken az ütköző objektumok egymás közelében töltött ideje, ami arányos a reakció megvalósulásának valószínűségével)

A fotoeffektus

Gamma-sugarak abszorpciója kötött elektronokon

A γ-foton a kölcsönhatás során teljes energiáját átadja.

Energiamérleg: $E_{\text{fotoelektron}} = E_{\gamma} - E_{k \ddot{o} t}$. ($E_{k \ddot{o} t}$ az elektron kötési energiája)

<u>Fontos</u>: ebben a kölcsönhatás-típusban az elektron és a foton is hullámként viselkedik (a γ-foton rezonanciába kerül az atommag erőterében kötött elektronnal - "atomi antenna")

2017 apr 28

A kölcsönhatás valószínűsége empirikus alapon:

$$\mu_{m,f} = 8,9 * 10^{-6} \frac{Z^{4,1}}{A_r} \lambda^n$$

 $\mu_{m,f}$ a tömegabszorpciós tényező (g/cm²-ben), Z az atom rendszáma, amiben az elektron kötve van A_r. a relatív atomtömeg, λ pedig a sugárzás hullámhossza nm-ben. $n \approx 3$.

Energiafüggés: A kölcsönhatás valószínűsége a γ -energia csökkenésével meredeken nő, mivel az általában nagy energiájú γ sugarak itt érik el az atomi elektronok kötési energiáit. Ebből az is következik, hogy a fotoeffektus (γ -sugarakkal) a legbelső elektronokon játszódik le előbb. Rendszámfüggés: mivel az elektronok kötési energiái a rendszámmal nagy mértékben emelkednek, az általában nagy energiájú γ –sugarak fotoeffektusának valószínűsége a rendszámmal meredeken nő. Hogy a gamma-fotonok az erősebben kötött elektronokon szenvednek fotoeffektust, alapvetően a jelenség hullámtermészetének a következménye....

$$\gamma \rightarrow e^+ + e^-$$

Az annihiláció megfordítottja

Energiaküszöb: 1,02 MeV (két elektron tömegének megfelelő ekvivalens energia)

 $\sigma_p = KZ^2 f(E_\gamma)$

A hatáskeresztmetszet a rendszám négyzetével arányos.

A három kölcsönhatás megjelenése pl. ólom esetén:

Nov. 21

Tipikus spektrum párképződés nélkül:

Másodlagos kölcsönhatások

Fékezési röntgensugárzás elektronok /pozitronok fékeződése Coulomb-térben

Karakterisztikus röntgensugárzás elektronvakancia betöltődésekor egy másik héjról

Belső konverzió a magból kilépő gamma kvantum helyett egy héjelektron lép ki ("belső fotoeffektus")

Konverziós tényező:
$$\alpha = \frac{n_{elektron}}{n_{gamma}}$$

Auger-effektus

egy karakterisztikusröntgen-kvantum helyett egy héjelektron lép ki ("belső fotoeffektus") A cirkónium KLL Auger-elektronjainak energiaspektruma.

Az Auger-effektus általában kaszkádszerűen megy végbe, mivel a kilépni szándékozó karakterisztikus röntgen fotonok egyre kisebb energiájúak és a fotoeffektussal analóg módon könnyen rezonanciába kerülnek valamelyik gyengén kötött elektronnal.

A KLL átmenet azt jelenti, hogy a fotoeffektus következtében a Khéjon létrejött elektronhiány az L-héjról töltődik fel, ugyanakkor az Auger-elektron távozása is az L-héjról történik. Az 1-3 indexek az Lhéj alhéjait jelentik

2016 apr 21

Gamma-sugarak magrezonancia-abszorpciója

A gammasugarak nagy energiájuk ellenére hihetetlenül kis energiabizonytalansággal rendelkeznek!

$$\Gamma \tau = \frac{h}{2\pi}$$

Példa: ⁵⁷Fe, energia,
$$E_{\gamma}$$
= 14400 eV, vonalszélesség: $\Gamma \sim 0,000000001$ eV

Probléma: visszalökődési energia, E_R

	$E_{\gamma}(\text{ eV})$	<i>Γ</i> (eV)	$E_{\rm R}({\rm eV})$
Közönséges fény:	~ 1	~ 10 ⁻⁵	~ 10 -11
Gamma-sugárzás (⁵⁷ Fe, 14,4 keV)	~ 10 ⁴	~ 10 -9	~ 10 ⁻³

Mössbauer-effektus

A "trükk":

Ha a gamma-kvantumot kibocsájtó mag /atom egy kristályrács része, akkor a visszalökődési energia két módon jelenhet meg.

Átadódhat **rezgési energiaként**, azaz fonont kelthet.

Ha a kvantáltság ezt nem engedi meg, akkor a kristályrács egésze, mint merev test veszi fel azt **kinetikus energiaként**.

*E*_R a szabad atom által átvett energiával összemérhető. $E_{\rm R}$ még a természetes vonalszélességhez képest is elhanyagolható. A Mössbauer-effektus lényege, hogy a gammakvantum kibocsátása/elnyelése során a kristályrács rezgésállapota nem változik meg.

"visszalökődés-mentes" magrezonanciaabszorpció/emisszió

A visszalökődésmentesség valószínűsége a Debyemodell segítségével felírható. "Mössbauer-Lamb faktor":

$$f(T) = \exp\left\{-\frac{6E_{\rm R}}{k\theta_{\rm D}}\left(\frac{1}{4} + \left(\frac{T}{\theta_{\rm D}}\right)^2 \int_{0}^{\theta_{\rm D}/T} \frac{x}{{\rm e}^x - 1} {\rm d}x\right)\right\}$$

 $E_{\rm R}$: visszalökődési energia; $\theta_{\rm D}$: Debye-hőmérséklet; T: hőmérséklet

Spektroszkópiai módszer kidolgozására alkalmas nuklidok:

A "vas-sugárforrás":

Mire jó a Mössbauer-spektroszkópia?

Kémiai információk szerzése a Mössbauer-nuklidot tartalmazó mátrixról:

➢A Mössbauer-nuklid vegyértékállapota

≻Spinállapota

Elektronszerkezetének részletei (elektronsűrűség a mag helyén, az elektronsűrűség eloszlása)

Mágneses tulajdonságai (belső mágneses tér, mágnesség jellege, pl. szuperparamágnesség)

>A kristályrács rezgési sajátságai (Debye-hőmérséklet)

Proporcionális számláló (a sugárzás energiájára érzékeny, de drága, mert nagyon stabil tápfeszültséget igényel)

Geiger-Müller számláló (a sugárzás energiájára érzéketlen, de olcsó, nem igényel erősítő egységet, γ-dózismérésre kiváló)

Szcintillációs és félvezető detektorok összehasonlítása:

Nov. 28.

Sugárkémia

<u>Célja</u>: ionizáló sugárzás hatására bekövetkező kémiai változások tanulmányozása

Alapfogalmak:

$$LET = dE/dx$$

Egységnyi úton a közegnek átadott energia

Meghatározza a sugárzási nyom (spur, trace) szerkezetét, sűrűségét és kiterjedését.

Sugárkémiai hozam

$$G = dn/dE$$

, and $dE \equiv 100 \text{ eV}$

100 eV elnyelt energia hatására keletkező specieszek száma (gyökök, ionok, bármiféle kémiai termékek)

A víz radiolízise

Primer folyamatok:

 $H_2O \longrightarrow H_2O^{+} + e^{-}$ ionizáció $H_2O \longrightarrow H_2O^{*}$ gerjesztés

- ionizációs küszöbenergia: ~ 13 eV)
- gerjesztési küszöbenergia: ~ 7,4 eV)

Primer specieszek, figyelembe véve a gerjesztett állapot homolitikus bomlását hidrogén és hidroxil gyökre:

 H_2O^* , H_2O^+ , HO^- , H^- és e_{aq}^-

Tipikus reakciók:

$$HO \cdot + HO \cdot \rightarrow H_2O_2$$

 $HO \cdot + e_{aq}^- \rightarrow OH^-$
 $HO \cdot + H \cdot \rightarrow H_2O$
 $H^+ + e_{aq}^- \rightarrow H \cdot$
 $e_{aq}^- + e_{aq}^- + 2H_2O \rightarrow H_2 + 2OH^-$
 $e_{aq}^- + H \cdot + H_2O \rightarrow H_2 + OH^-$
 $H \cdot + H \cdot \rightarrow H_2$

Nagy LET-értékű sugárzások esetén további reakciók:

A bruttó reakció kis LET érték esetén:

 $2H_2O \longrightarrow H_2 + H_2O_2$ nagy LET-érték esetén: 2016 apr 26 $2H_2O \longrightarrow 2H_2 + O_2$ Sugárkémiai hozamok különböző sugárzások esetén:

Radiation	G (-H ₂ O)	G (H ₂ +H ₂ O ₂)	G (e ⁻ _{aq})	G (H)	G (OH)
X-rays and fast electrons 0.1-20 MeV	4.08 pH 3-13	1.13	2.63	0.55	2.72
12 MeV alpha	2.84 pH 7	2.19	0.42	0.27	0.54
Polonium alpha, 3 MeV	3.62 pH 0.46	3.02	0	0.60	0.50

Az egyes specieszek detektálása többnyire spektrofotometriás úton lehetséges:

Dózis

mértékegység: C/kg_{levegő} (régi egység: 1 röntgen = 2,58x10⁻⁴ C/kg_{levegő})

Jelentősége: méréstechnikai, történeti

Elnyelt dózis

Jele: D

Definíció:
$$D = dE_{elnyelt}/dm$$

Egységnyi térfogatelemben a sugárzás által átadott energia, osztva a térfogatelem tömegével

```
mértékegysége: J/kg (Gy, gray)
(régi egység: 1 rad = 0,01 Gy) rad = radiation absorbed dose
```

Fontos:

A <u>sugárzás energiája</u> és a sugárzásból <u>elnyelt energia</u> közötti összefüggés messze nem triviális!

```
Közölt dózis (Kerma)
```

Szekunderelektron-egyensúly:

Teljesül, ha egy detektor érzékeny térfogatában közvetetten ionizáló sugárzás (gamma, röntgen és neutron) hatására képződő töltött részecskék ugyanott fékeződnek le, azaz, az e térfogatba belépő és azt elhagyó töltött részecskék száma megegyezik.

Egyenérték dózis

Table 3. Radiation weighting factors

Jele: H_t

mértékegység: J/kg (Sv, sievert) (régi egység: 1 rem = 0,01 Sv)

A sugárzásra jellemző súlyfaktorok.

Radiation type	Radiation Weighting Factor, w _R
Photons	1
Electrons and muons	1
Protons and charged pions	2
Alpha particles, fission fragments, heavy ions	20
Neutrons	A continuous function of neutron energy (See Figure 1)

Fig. 1. Radiation weighting factor, w_R, for **neutrons versus neutron energy** (from ICRP Publication 103, Fig.1)
Az egyenérték dózis jelentősége:

•a sugárzás típusától függetlenül írja le a biológiai hatásokat
•egyes szövetekre vonatkozik

új fogalom kell!

Effektív dózis

Jele: *E* mértékegység: J/kg (Sv, sievert)

 $E = \sum_{t} w_t H_t$

Szöveti súlytényezők (t: tissue)

Jelentősége:

 az egész testre kifejtett egészségkárosodás leírására használható (csak sztochasztikus hatásokra!)

Testszövet	w _T
Csontvelő	0,12
Vastagbél	0,12
Tüdő	0,12
Gyomor	0,12
Emlő	0,12
Egyéb szövetek (a)	0,12
Ivarmirigyek	0,08
Hólyag	0,04
Nyelőcső	0,04
Máj	0,04
Pajzsmirigy	0,04
Csontfelszín	0,01
Agy	0,01
Nyálmirigyek	0,01
Bőr	0,01

A besugárzási dózis és az elnyelt dózis kapcsolata

A Bragg-Gray elv

Kapcsolatot teremt a levegőre mérhető besugárzási dózis (X) és az emberi testre érvényes elnyelt dózis között.

szükséges energia levegőben.

Fontos:

Egy ionizáló **sugárzás veszélyességének** a megítélésénél két paramétert kell számításba venni:

Mekkora a kölcsönhatás valószínűsége?

A kölcsönhatási esemény (ionizáció) során mekkora a közegnek átadott energia?

Az ionizáló sugárzások biológiai hatásai

1901- Becquerel,

bőrpír észlelése

1902 - az első sugárrák esetek pl.: Hamburg, 359 orvos esik áldozatul a röntgensugárzásnak (még nem radioaktív sugárzás!)

A belső sugárterhelés áldozatai:

Ra-tartalmú óraszámlap-festékkel dolgozók New Jerseyben

1927 - a genetikai hatások felismerése

Determinisztikus és sztochasztikus hatások rövid idő alatt elszenvedett viszonylag nagy dózis esetén:

Elnyelt dózis

A sztochasztikus hatások bizonytalansága kis dózisoknál:

A forróatom-kémia alapjai

Szilárd - Chalmers effektus:

Ez volt az első "forróatom-reakció".

Termikusan kontrollált reakciók esetén:

Boltzmann szerint:

$$\frac{n(E^*)}{\sum_{E} n(E)}\Big|_{T} = e^{-\frac{E^*}{k_B T}}$$

Példa: a részecskék mekkora hányadának van 100 eV aktiválási

energiája 20°C-on?

$$\frac{n(100eV)}{\sum n}\Big|_{t=20^{\circ}C} = e^{-\frac{100eV}{0.025eV}} = \frac{1}{e^{4000}} = 10^{-1740} \cong 0$$

Relativisztikus eset: (ha v összemérhető c-vel)

A relativisztikus kinetikus energia:

$$E_{k} = mc^{2} - m_{o}c^{2} = m_{o}c^{2} \left[\frac{1}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}} - 1 \right]$$

relativisztikus impulzus (lendület):

A fentiekből következően akilökődő részecske (forróatom) relativisztikus impulzusa::

$$p_{m} = \left(\frac{E_{m}^{2}}{c^{2}} + 2E_{m}m_{o}\right)^{\frac{1}{2}},$$

az impulzusmegmaradás törvényének felhasználásával:

$$E_{M} = \frac{E_{m}^{2}}{2Mc^{2}} + \frac{E_{m} \cdot m_{o}}{M}$$
nemrelativisztikus tag
relativisztikus tag

Amennyiben a kilökött "részecske" egy γ -foton, akkor $m_0 = 0$, és így:

$$E_M = \frac{E_{\gamma}^2}{2Mc^2}$$

(lásd később a Mössbauer spektroszkópiánál!)

Tipikus visszalökődési energiák:

Pl. ha $A_r = 100$; $E_m = 1$ MeV, akkor

$$E_{\rm R} \qquad \begin{array}{c} \gamma \text{-kvantum}: \longrightarrow 5 \text{ eV} \\ \beta \text{-részecske:} \longrightarrow 20 \text{ eV} \end{array}$$

Ezek az energiák valamivel nagyobbak, mint egy átlagos kémiia kötés energiája.

Kötésszakadás lehetséges

Milyen feltételekkel?

A visszalökődési energiát elsődlegesen az *m* tömeg veszi át, majd átadja az egész rendszernek.

Ha kötésszakadás nem következik be, akkor:

$$mv_m = (M+m)v_{M+m}$$

Az impulzusmegmaradás törvénye miatt ez csak abban az esetben képzelhető el, ha a visszalökődési energia egy része a rendszer belső energiáját növeli (E_i),:

$$E_{m} = \frac{1}{2} (M + m) v_{M+m}^{2} + E_{i}$$

(máskülönben *M* és *m* sebessége eltérő lenne, ami azt jelentené, hogy elszakadnak egymástól!)

Algebrai átalakításokkal:

$$v_{M+m}^{2} = \frac{m^{2}}{(M+m)^{2}} v_{m}^{2}, \text{ igy}$$
$$E_{m} = \frac{1}{2} \frac{m^{2}}{M+m} v_{m}^{2} + E_{i}; v_{m}^{2} = \frac{2E_{m}}{m}, \text{ és}$$

$$\begin{split} E_m - E_i &= \frac{1}{2} \frac{m^2}{M+m} \cdot \frac{2E_m}{m} = \frac{m}{M+m} E_m \\ \text{végül:} \qquad E_i &= E_m \cdot \frac{M}{M+m} \\ \end{split}$$
Tehát kötésszakításra csak a primer visszalökődési energia fenti tömeghányad szerinti része használható fel, amikor:
$$E_i > E_{kötési}. \end{split}$$

2016 apr 29

Radionuklidok a környezetben

Elsődleges természetes radionuklidok

olyan természetes radioaktív magok, amelyek megtalálhatóak a Naprendszer keletkezése óta;

- felezési idejük nagyon hosszú;
- 26 ismert mag, pl: ²³⁸U(4,47·10⁹ év), ⁴⁰K(1,28·10⁹ év), ⁸⁷Rb(4,8·10¹⁰ év).

```
További, kevésbé jelentősek:
<sup>50</sup>V, <sup>113</sup>Cd, <sup>115</sup>In, <sup>123</sup>Te, <sup>138</sup>La, <sup>144</sup>Nd, <sup>147,148</sup>Sm, <sup>152</sup>Gd, <sup>156</sup>Dy, <sup>174</sup>Hf, <sup>176</sup>Lu,
<sup>186</sup>Os, <sup>187</sup>Re, <sup>190</sup>Pt.
```

Másodlagos természetes radionuklidok

Olyan magok, amelyek az előzőek keletkezése révén bomlanak;

- felezési idejük rövidebb;
- 38 ismert mag, pl: ²²⁶Ra (1600 év), ²³⁴Th (24,1 nap).

Indukált természetes radionuklidok

Kozmikus sugárzás hatására keletkeznek;

– 10 ismert mag, pl: ³H (T_{1/2}=12,3 év), ¹⁴C (T_{1/2}=5730 év).

További példák: ^{7,10}Be, ²²Na, ²⁶Al, ^{32,33}P, ³⁵S, ³⁶Cl, ³⁹Ar

³H keletkezése:

```
<sup>14</sup>N + kozmikus gyors n \rightarrow <sup>12</sup>C + <sup>3</sup>H
rendkívül lágy béta-sugárzó (βmax = 18 keV)
T<sub>1/2</sub> = 12.3 év
```

• ¹⁴C keletkezése:

```
<sup>14</sup>N+lassú n \rightarrow <sup>14</sup>C + <sup>1</sup>H
lágy béta-sugárzó (βmax = 155 keV)
T<sub>1/2</sub> = 5736 év
```

Kozmogén radionuklidok és főbb jellemzőik

Radionuklid	T _{1/2}	Globális aktivitás	Troposzféra AK
		(PBq)	(mBq/m ³)
Н-3	12,33 év	1275	1,4
Be-7	53,29 nap	413	12,5
Be-10	1,51E6 év	230	0,15
C-14	5730 év	12750	56,3
Na-22	2,602 év	0,44	2,1E-3
Al-26	7,4E5 év	0,71	1,5E-8
Si-32	172 év	0,82	2,5E-5
P-32	14,26 nap	4,1	0,27
P-33	25,34 nap	3,5	0,15
S-35	87,51 nap	7,1	0,16
Ar-37	35,04 nap	4,2	0,43
Ar-39	269 év	28,6	6,5
Kr-81	2,29E5 év	0,005	1,2E-3

Mesterséges radionuklidok

 Emberi tevékenység során keletkeztek, a természetben nincsenek számottevően jelen;

- kb. 2000 ismert mag, pl: ⁶⁰Co, ¹³⁷Cs, ²⁴Na

NORM: Naturally-Occurring Radioactive Materials

(földkérgi és kozmikus eredetű radionuklidokat tartalmazó anyagok)

TENORM: Technologically-Enhanced Naturally-Occurring Radioactive Materials

(földkérgi és kozmikus eredetű radionuklidokat valamilyen, a nukleáris technológiáktól független okból feldúsulva tartalmazó anyagok) A NORM/TENORM anyagokban a ⁴⁰K, valamint a ²³⁸U, ²³²Th és a bomlási sorukban lévő elemek nagyobb aktivitás-koncentrációban találhatók, mint az átlagos talajokban.
 Így a feldolgozásuk során képződő hulladékok is tartalmazzák ezeket a nuklidokat, méghozzá

többszörösen feldúsulva (néhány Bq/g-többezer Bq/g).

TENORM – ot produkáló eljárások:

- •Bauxitbányászat és feldolgozás
- Cirkonhomok felhasználás, kerámiagyártás(ZrSiO₄, ZrO₂)
- •Fémércbányászat, érckohászati feldolgozás
- •Foszfátérc feldolgozás, műtrágyagyártás
- •Geotermikus energia felhasználás
- •Kőolaj és földgáz kitermelés
- •Ritkaföldfém bányászat és feldolgozás
- •Szénbányászat, széntüzelésű erőművek

Jellemző radioaktivitás-koncentrációk a talajban és építőanyagokban					
Talaj	Beton	Tégla	Ytong tégla	Gázbeton	
350-450	204	721	173	158	
25-30	11	44	9	30	
25-30	13	44	13	30	
	oaktivitás-kor Talaj 350-450 25-30 25-30	oaktivitás-koncentrációk a Talaj Beton 350-450 204 25-30 11 25-30 13	oaktivitás-korcentrációk a talajban és éjTalajBetonTégla350-45020472125-30114425-301344	oaktivitás-korcentrációk a talajban és építőanyagokba Talaj Beton Tégla Ytong tégla 350-450 204 721 173 25-30 11 44 9 25-30 13 44 13	

Élelmiszerek:

(Bq/kg)	K-40	Ra-226
Banán	0,13	0,04
Sárgarépa	0,12	0,07
Burgonya	0,12	0,09
Sör	14,4	-
Vörös húsok	0,11	0,02

Dec. 5.

A háttérsugárzás "felelősei":

Földkérgi (primordiális) sugárzás okozói:
²³⁸U (T_{1/2} = 4,5 milliárd év) urán-rádium sor
²³⁵U (T_{1/2} = 0,7 milliárd év) urán-aktínium sor
(természetes izotóp arány: 99.3% ²³⁸U, 0.7% ²³⁵U)
²³²Th (T_{1/2} = 14 milliárd év) tórium-sor
⁴⁰K (T_{1/2} = 1.3 milliárd év): Földkéregben 2,6 % - 7. leggyakoribb elem.
Jelen van talajban, növényekben, élőlényekben.

Emberben kb. 4400 Bq

Kozmikus sugárzás

Az űrből (Napból, galaxisból) érkező nagy energiájú (10⁸-10²⁰ keV) részecske-sugárzások: protonok, elektronok, alfa-részecskék

Jellemző dózisteljesítmény:

- szabadban: 80 120 nSv/h
- épületekben: 80 200 nSv/h

Radon

Belégzése:

- a természetes sugárterhelés legnagyobb része (60%)
- jellemző értékek
 - szabadban: 1-10 Bq/m3
 - épületekben: 50-300 Bq/m3
 - hazai átlag: kb. 130 Bq/m3
 - talajgázban néhány 10 kBq/m3
- a sugárterhelés döntően a leányelemektől ered
- forrása: talaj, építőanyag, vezetékes víz, földgáz

A különböző eredetű háttérsugárzásból eredő dózisok:

[Forrás: MEXT - Ministry of Education, Culture, Sports, Science and Technology - Japan (http://www.mext.go.jp/)]

Nukleáris Medicina

Diagnosztikai célú izotópfelhasználás

(Nyomjelzés az élő szervezetben)

<u>Cél:</u> biológiailag aktív anyagok tér- és időbeli eloszlásának a vizsgálata

I. Folyadékáramlás vizsgálata

- agyi vérellátás
- tüdő vérellátása
- nyirokkeringés
- stb.

II. Jelzés szelektív megkötődés alapján

- ioncsere és kemiszorpció csontszöveten
- jódmegkötődés pajzsmirigyben
- sejten belüli ligandumcsere vesében
- kationfelvétel szívizomban
- megkötődés enzimatikus reakcióban
- receptorkötődés tumorsejteken
- megkötődés immunreakcióban

III. Metabolizmus és kiválasztás követése

- májban
- vesében

Elvárások az izotóppal szemben:

sugárzás típusa: γ-sugárzó (100-300 keV)

 felezési idő (idomuljon a vizsgálat időtartamához, célszerűen legyen minél rövidebb)

- legyen megfelelő hordozó molekula

Fontosabb, radiofarmakonokban előforduló nuklidok:

γ-sugárzók:

izotóp	felezési idő	γ-energia	megjegyzés
^{99m} Tc	6 óra	140 keV	anyaelem: 99Mo
			(66 óra) →
			szállítható
			generátor
¹¹¹ In	2,8 nap	172 keV	
		247 keV	
¹²³ I	13 óra	393 keV	99mTc-mal
			analóg
			felhasználás
¹²⁷ Xe	36,4 nap	173 keV	belégzéses
		204 keV	tődővizsgálatra;
		377 keV	környezeti
			sugárterhelés!

PET-izotópok:

 ${}^{18}F_{11}(110 \text{ perc, } 635 \text{ keV } \beta^{+})$ ${}^{11}C_{1}, {}^{15}O_{1}, {}^{13}N$

terápiás β -sugárzók:

⁸⁹Sr, ⁹⁰Y, ¹⁵³Sm (csont)
¹³¹I (pajzsmirigy)
¹⁶⁵Dy (ízületi gyulladás)
¹⁶⁶Ho (májtumor)

